Search results for " 57M99."
showing 5 items of 5 documents
Building Anosov flows on $3$–manifolds
2014
We prove a result allowing to build (transitive or non-transitive) Anosov flows on 3-manifolds by gluing together filtrating neighborhoods of hyperbolic sets. We give several applications; for example: 1. we build a 3-manifold supporting both of a transitive Anosov vector field and a non-transitive Anosov vector field; 2. for any n, we build a 3-manifold M supporting at least n pairwise different Anosov vector fields; 3. we build transitive attractors with prescribed entrance foliation; in particular, we construct some incoherent transitive attractors; 4. we build a transitive Anosov vector field admitting infinitely many pairwise non-isotopic trans- verse tori.
Categorical action of the extended braid group of affine type $A$
2017
Using a quiver algebra of a cyclic quiver, we construct a faithful categorical action of the extended braid group of affine type A on its bounded homotopy category of finitely generated projective modules. The algebra is trigraded and we identify the trigraded dimensions of the space of morphisms of this category with intersection numbers coming from the topological origin of the group.
Geometric représentations of the braid groups
2010
We show that the morphisms from the braid group with n strands in the mapping class group of a surface with a possible non empty boundary, assuming that its genus is smaller or equal to n/2 are either cyclic morphisms (their images are cyclic groups), or transvections of monodromy morphisms (up to multiplication by an element in the centralizer of the image, the image of a standard generator of the braid group is a Dehn twist, and the images of two consecutive standard generators are two Dehn twists along two curves intersecting in one point). As a corollary, we determine the endomorphisms, the injective endomorphisms, the automorphisms and the outer automorphism group of the following grou…
Embedding mapping class groups of orientable surfaces with one boundary component
2012
We denote by $S_{g,b,p}$ an orientable surface of genus $g$ with $b$ boundary components and $p$ punctures. We construct homomorphisms from the mapping class groups of $S_{g,1,p}$ to the mapping class groups of $S_{g',1,(b-1)}$, where $b\geq 1$. These homomorphisms are constructed from branched or unbranched covers of $S_{g,1,0}$ with some properties. Our main result is that these homomorphisms are injective. For unbranched covers, this construction was introduced by McCarthy and Ivanov~\cite{IM}. They proved that the homomorphisms are injective. A particular cases of our embeddings is a theorem of Birman and Hilden that embeds the braid group on $p$ strands into the mapping class group of …
From braid groups to mapping class groups
2005
This paper is a survey of some properties of the braid groups and related groups that lead to questions on mapping class groups.